

A Novel Computer-Based Set-Up for the Analysis of Group Synchronisation

Authors

Francesco Alderisio*, Maria Lombardi**, Gianfranco Fiore*, Mario di Bernardo* **

* Engineering Mathematics, University of Bristol, UK

** Electrical Engineering and Information Technology, University of Naples "Federico II", Italy

Natural human synchronization

Each individual moves differently from the others:

but

An individual, who interacts with another one, tends to reach the synchronization

Natural human synchronization

Each individual moves differently from the others:

but

An individual, who interacts with another one, tends to reach the synchronization

Two individuals

Natural human synchronization

Each individual moves differently from the others:

but

An individual, who interacts with another one, tends to reach the synchronization

Two individuals

...in a group?

Why and What do we want to study?

The activities performed by each group member continually influence the activities of others

And what about the spatial disposition of people?

Why and What do we want to study?

What

The activities performed by each group member continually influence the activities of others

And what about the spatial disposition of people?

Why _____

In the future there will be a world in which man and robot will live together

- Integration
- Human-like behavior

$\begin{array}{c} x = y \\ \beta x^2 \end{array}$	Analysis of human movements model
B Here case	Development of Software to play Mirror Game between two players
	Study of synchronization: HP - HP trials
	Design and Validation of Virtual Player
	Study of synchronization: VP - HP trials
	Extension of Software System to a multiplayers game
	Study of synchronization: HP group
	Study of synchronization: HP - VP group

$\begin{array}{c} x = y \\ \beta x^2 \end{array}$	Analysis of human movements model
	Development of Software to play Mirror Game between two players
	Study of synchronization: HP - HP trials
	Design and Validation of Virtual Player
	Study of synchronization: VP - HP trials
	Extension of Software System to a multiplayers game
	Study of synchronization: HP group
	Study of synchronization: HP - VP group

With social interaction

Wing AM, Woodburn C. The coordination and consistency of rowers in a racing eight. Journal of sports sciences. 1995;13(3):187–197.

Himberg T, Thompson M. Group synchronization of coordinated movements in a cross-cultural choir workshop. 2009.

Frank T, Richardson M. On a test statistic for the Kuramoto order parameter of synchronization: An illustration for group synchronization during rocking chairs. Physical D: Nonlinear Phenomena. 2010;239(23):2084–2092.

Richardson MJ, Garcia RL, Frank TD, Gergor M, Marsh KL. Measuring group synchrony: a cluster-phase method for analyzing multivariate movement time-series. Frontiers in physiology. 2012;3:405.

Codrons E, Bernardi NF, Vandoni M, Bernardi L. Spontaneous group synchronization of movements and respiratory rhythms. PloS one. 2014;9(9):e107538.

Iqbal T, Riek L. A method for automatic detection of psychomotor entrainment, 2015.

The innovation of this work

State of art limits

- 1. No anonymity
- 2. No different network topologies
- 3. Visual and auditory coupling
- 4. Invasive camera, markers and position sensors

The innovation of this work

State of art limits

- 1. No anon vity
- 2. No difference two copologies
- 3. Visual and au coupling
- 4. Invasive came , prkers and position second

Our approach

Beyond the limits

- 1. Interaction through a screen
- 2. Implementation of different topologies
- 3. No visual and auditory coupling
- 4. Leap motion as position sensor

Network topologies to represents different interaction

A graph is a tuple G=(V,E) defined by a set of nodes $V=\{1,...,N\}$ and a set of edges

Node

Network topologies to represents different interaction

A graph is a tuple G=(V,E) defined by a set of nodes V={1,...,N} and a set of edges

Network topologies to represents different interaction

A graph is a tuple G=(V,E) defined by a set of nodes V={1,...,N} and a set of edges

Software System: Use case diagram

What's the virtual player?

What's the virtual player?

Software System: Deployment diagram

Software System: User interface

Experimental Protocol

- Group of five people
- Trials of 30 seconds
- 8 different network topologies
- 6 trials for each network topology
- Without any social interaction among them
- Anonymity among the players
 - No knowledge of the current network topology
 - No knowledge of set links
- Players are asked to coordinate their hand motion

Synchronization metric

$$\rho_g(t) := \frac{1}{N} \left| \sum_{k=1}^N e^{j \left[\phi_k(t) - \bar{\phi}_k \right]} \right| \in [0, 1]$$

- N: number of individuals
- $\phi_k(t)$: Relative phase between kth participant and the group

Undirected Networks

Directed Networks

Experimental results: group synchronization

Conclusions and future works

Now...

- Implementation of an experimental set-up to study of multiplayer coordination without social interaction
- Implementation of different topological connections
- Possibility of performing trials between a human and a virtual player (couple and on the network)

... in the future

 Perform group trials allowing social interaction, and compare them with the case of absence of social interaction

